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Effects of charge-density fluctuations on a phase behavior of the restricted primitive model are studied
within a field-theoretic formalism. We focus on a � line of continuous transitions between charge-ordered and
charge-disordered phases that is observed in several mean-field theories, but is absent in simulation results. In
our study the RPM is reduced to a �6 theory, and a fluctuation contribution to a grand thermodynamic potential
is obtained by generalizing the Brazovskii approach. We find that in a presence of fluctuations the �-line
disappears. Instead, a fluctuation-induced first-order transition to a charge-ordered phase appears in the same
region of a phase diagram, where the liquid–ionic-crystal transition is obtained in simulations. Our results
indicate that the charge-ordered phase should be identified with an ionic crystal.
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I. INTRODUCTION

Molten salts, ionic liquids or electrolytes can be described
by the restricted primitive model �RPM�, where impenetrable
hard cores of diameter � carry charges with equal magnitude
e �1,2�. In the continuum-space RPM a separation into uni-
form ion-dilute and ion-dense phases with an associated
critical point occurs at low densities, a transition to an ionic
crystal of the CsCl type occurs at intermediate densities, and
at high densities the fcc crystal is stable �3�. The above
phase-behavior was confirmed by simulations �4–6�. The fcc
crystal undergoes a weakly first-order transition between a
high-temperature phase without a substitutional order and a
low-temperature phase of the tetragonal �4,6� symmetry. In
recent simulations another fcc crystal with a substitutional
order of the CuAu symmetry was discovered in a narrow
window between the CsCl and the tetragonal phases �7�.

In addition to the phase transitions found in simulations, a
line of continuous phase transitions �� line� was found in
theoretical studies �1,3,8–13�, except from the mean-
spherical �MSA� and related approximations �1,14,15�.
Along the � line a decay length of a charge-density correla-
tion function, which exhibits exponentially damped oscilla-
tions on the length scale ��, diverges. In some theories the
� line is separated from a first-order transition by a tricritical
point �tcp� �8,16–18�. In Ref. �3� this line was just rejected as
an unphysical solution. Indeed, a location of the � line on a
phase diagram depends strongly on a regularization of the
Coulomb potential inside the hard core �11,19�. This fact
may indicate that the � line is an artifact that results from
approximations made in different theories �20,21�. On the
other hand, in Ref. �9� it was conjectured that a divergent
correlation length is a signature of a crystallization. No quan-
titative arguments supporting the above conjecture were
given, however. Thus, a role of the �-line in the approximate
theories �1,3,8–13� �all of them of a mean-field �MF� type�,
and its existence in the RPM, remained unclear �1,20�.

Renewed interest in the whole phase diagram of the RPM,
especially in the � line and the tcp, is motivated by recent
results obtained for the lattice RPM �LRPM�, where posi-

tions of ions are restricted to sites of different lattices. On
lattices with different symmetries and/or with a lattice con-
stant a corresponding to different values of � /a�1, the ions
form different periodic patterns at low temperatures T and/or
at high densities �. Different patterns correspond to different
charge-ordered phases. Transitions between the high-
temperature, charge-disordered phase and the charge-ordered
phases are either continuous or first order, depending on de-
tails of a lattice structure �8,12,22–29�. In particular, on a
simple cubic �sc� lattice with � /a=1, only an order-disorder
transition to a phase with two oppositely charged sublattices
occurs; this transition is continuous for T�Ttc, where Ttc
denotes temperature at the tcp. The phase separation into
dilute and dense uniform phases is only metastable
�8,10,17,18�. Note that no � line of continuous transitions is
predicted by the MSA for the LRPM �30�, in an obvious
disagreement with simulations �17,22,27,29� and exact theo-
retical predictions �30�. The two types of the charge-ordered–
charge-disordered transition are shown in Fig. 1. According
to recent simulations �4�, the transition lines between the
liquid and the CsCl crystal are very similar to the thick lines
shown in Fig. 1. Note that in contrast to close-packed crys-
tals, the transition density shows significant dependence on
temperature.

The above observations raise a question on a relation be-
tween the � line in the continuum space and the charge-
ordered–charge-disordered transitions on the lattice. In this
work we study effects of fluctuations on the � line within the
field-theoretic description developed in Ref. �8�. On a MF
level of this theory the phase diagram for each version of the
RPM is the same as on the sc lattice with � /a=1 �thin lines
in Fig. 1�. Namely, only the order-disorder transition that is
continuous for T�Ttc is present �8,12,25,26�. When fluctua-
tions are included within the field-theoretic approach initi-
ated by Brazovskii �31�, in some lattice systems the order-
disorder transition becomes fluctuation-induced first order
�24–26� �thick lines in Fig. 1�. The order of the transition
agrees with simulation results for all considered cases
�22,27–29�. In Refs. �16,25� arguments were given that in the
continuum-space RPM the order-disorder transition becomes
fluctuation-induced first order as well.
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Except from the order of the considered transition, its
location on the phase diagram is of major importance for an
identification of the charge-ordered phase. On the MF level
of our theory the order-disorder transition occurs at low den-
sities and high temperatures, and the separation into uniform
ion-dilute and ion-dense phases is suppressed. Beyond MF,
and under the assumption that the order-disorder transition is
moved away by fluctuations, the considered field theory �8�
predicts that for low densities the phase separation into ion-
dilute and ion-dense phases occurs. The associated critical
point belongs to the Ising universality class �8,16,32�, in
agreement with the earlier theoretical arguments by Stell
�1,33�, and with recent theory �20�, experiments �34–36� and
simulations �37–42�. It is necessary to verify if the fluctua-
tions may lead to a shift of the phase boundaries of the
charge-ordered phase from the phase-space region where the
gas-liquid separation takes place, to the phase-space region
where the CsCl crystal is stable, to make the field-theoretic
arguments in favor of the Ising universality class �8,16,32�
complete, and to identify the charge-ordered phase with the
CsCl crystal. This is a purpose of our work.

Our work is based on the Brazovskii theory, which turned
out to be successful in a description of phase transitions and
structure of soft-matter systems �43–45�. Analogous theory
for hard crystals has not been developed yet. The important
common feature of the soft and ionic crystals is that the
periodic ordering is not a result of close packing, but follows
directly from interaction potentials, or effective, state-
dependent potentials that favor periodic structures for any
density. Since the leading physical mechanism that induces

the periodic ordering of soft and ionic crystals is similar, we
expect that the Brazovskii approach is an appropriate
description of ionic crystallization.

In Sec. II the field-theoretic description of the RPM is
described, our approximations are discussed, and notation is
fixed. In Sec. III we derive approximate expressions for the
grand potential with the fluctuation-contribution included.
The following section is devoted to the results obtained for
the order-disorder transition. The last section contains a short
summary and a discussion.

II. FIELD-THEORETIC DESCRIPTION OF THE RPM

Field theory for the RPM that is considered in this work
was derived in Refs. �8,16,26�. In this section we summarize
the key steps of the derivation, discuss assumptions and ap-
proximations, and fix our notation. We consider local devia-
tions from the uniform number and charge densities, ��x�
=�*�x�−�0

*=�+
*�x�+�−

*�x�−�0
* and ��x�=�+

*�x�−�−
*�x�, re-

spectively. �+
*�x� and �−

*�x� correspond to a local number
density of cations and anions, respectively, and �0

* is the most
probable number density of ions. Asterisks indicate that all
densities are dimensionless, and the unit volume is �3, where
� is the core diameter. � is the charge density in e /�3 units,
e is the charge. We focus on systems that are globally charge
neutral,

�
x

��x� = 0, �1�

where in this paper we use the notation �x��dx. Deviations
from equilibrium, uniform distributions of ionic species are
thermally excited with the probability density �8,16,46�

p��,�*� = 	−1 exp�− 
�MF��,�*�� , �2�

where 	 is a normalization constant, and in our theory �MF

is approximated by �8,16,26�

�MF��,�*� = Fh��,�*� + U��� − ��
x

��x� . �3�

� is the chemical potential of the ions, Fh=�xfh is the hard-
core reference-system Helmholtz free energy of the mixture
in which the core-diameter � of both components is the
same. For the continuum RPM we adopt the Carnahan-
Starling �CS� form of fh in the local-density approximation,


fh��*,�� =
�* + �

2
ln	�* + �

2

 +

�* − �

2
ln	�* − �

2

 − �*

+ �*s�4 − 3s�
�1 − s�2 , �4�

where �*=�+�0
*, for �*=�0

*, the �MF�0,�*� assumes a mini-
mum, and s=�* /6. Finally, the energy in the RPM is given
by

FIG. 1. Schematic representation of the order-disorder transition
in the LRPM. Thin dashed- and solid lines represent continuous and
first-order transitions respectively that were found on the sc lattice
with � /a=1 �12,17,22,25,27,29�. The dashed line is a lattice-analog
of the �-line. Thick solid lines represent the first-order transition
that occurs for � /a=�2,2 �16,22,25,26,28�. The transition shown
by the thin lines can be continuously transformed to the transition
shown by the thick lines when additional nearest neighbor repulsion
J is present. For small values of J the diagram is shown by the thin
lines. When J exceeds a certain value, J0, the dashed line splits into
two lines that move away when J increases �25,29�, and the first-
order transition that occurs for large values of J is represented by
the thick solid lines. According to simulation results �4�, the shape
of the liquid-CsCl crystal two-phase region in continuum-space
RPM is similar to that shown by the solid lines. Other transitions
that occur in some versions of the LRPM and in the continuum
space at low- and at high densities are not shown. T and � are in
arbitrary units.
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U��� =

*

2
�

x
�

x�
���x� − x� − 1�

��x���x��
�x − x��

=

*

2
�

k
�̃�k�Ṽ�k��̃�− k� , �5�

where �k��dk / �2�3. Contributions to the electrostatic en-
ergy coming from overlapping cores are not included in �5�.
We should note that the regularization of the Coulomb po-
tential for r�� is to some extent arbitrary; in particular, in
Refs. �11,13,21� different regularizations were chosen. Here
and below x= �x� is measured in � units. 
*=1/T*

=
e2 / �D�� is the inverse temperature in standard reduced

units; D is the dielectric constant of the solvent. Ṽ�k�
=4 cos k /k2 is the Fourier transform of V�x�=��x−1� /x,
and k is in �−1 units. From the minimum condition
for �MF�� ,�*� we obtain the relation between �0

* and the
intensive parameters,


� = ln �0
* +

s�8 − 9s + 3s2�
�1 − s�3 . �6�

The fields � and � occur with the probability �2�, where
the functional �MF�� ,�0

*+�� consists of a constant term
�MF�0,�0

*� which is irrelevant, and of the term that depends
on � and �,

��MF��,�� = �MF��,�0
* + �� − �MF�0,�0

*�

= �2��,�� + �int��,�� . �7�

The boundary of stability of ��MF�� ,�� is determined by
the Gaussian part,


�2 =
1

2
� dk

�2�3 �C̃��
0 �k��̃�k��̃�− k� + �0,2�̃�k��̃�− k�� ,

�8�

where

C̃��
0 �k� = �0

*−1 + 
*Ṽ�k� , �9�

and

�0,2 =  �2
fh

��*2 
�*=�0

*
=

1 + 4s + 4s2 − 4s3 + s4

�1 − s�4�0
* , �10�

when the CS reference system is used.
The functional �7� assumes a minimum for the uniform

density �0
* and �=0 as long as its second functional deriva-

tive at �0
* and �=0 is positive definite. The boundary of

stability, C̃��
0 �kb�=0, occurs along the line

T* = − Ṽ�kb��0
* � 1.61�0

*, �11�

where kb�2.46 corresponds to the minimum of Ṽ�k�
�12,16,26�. As the minimum �maximum� of ��MF corre-
sponds to the maximum �minimum� of the Boltzmann factor
�2�, �=0 becomes less probable than ��x��cos�r ·kb� when

T*�−Ṽ�kb��0
*. For temperatures higher than at the line �11�

the randomly chosen instantaneous local densities are most

probably uniform. For lower temperatures, however, the
randomly chosen instantaneous densities most probably
have a form of planar waves with the wave vector kb, or of
superpositions of such waves. The line �11� separates the
regions with and without an instantaneous structure. Hence,

for T*�−Ṽ�kb��0
* clusters with oppositely charged nearest

neighbor are expected to dominate in simulation snapshots.
The last term in Eq. �7� is local, and can be written as


�int��,�� = �
x


�int„��x�,��x�… , �12�

with


�int��,�� = �
2m+n�2

�2m,n

�2m� ! n!
�2m�n, �13�

where �2m,n are appropriate derivatives of 
fh. We consider a
truncated form of 
�int�� ,��, because otherwise analytical
results for the fluctuation contribution to the grand potential
are not possible. Strictly speaking, the above expansion can
be truncated for �→0 and �→0. For given values of � and
�, in particular for the results of our calculations in the or-
dered phase, however, the truncated expansion may be over-
simplified, especially for small values of �0

* and for large
amplitudes of the fields.

In the field theory the grand potential and the charge-
density correlation function are given by

� = − kT ln 	 , �14�

and

���x���x��� = 	−1� D�� D�e−
��MF
��x���x�� ,

�15�

respectively, where

	 =� D�� D�e−
��MF
. �16�

In the weighted-field approximation �WF� introduced in
Ref. �8�, and described in more detail in Refs. �16,26,46�, the
field ��x� is approximated by its most probable form for
each given field ��x�. In other words, for a given field ��x�,
the field ��x� is determined by the minimum of

��MF�� ,�� ��
��MF�� ,�� /��=0�, and can be written in
the form

�WF���x�� = �
n

an

n!
��x�2n, �17�

where the coefficient an is given in terms of �2m,j such that
m+ j�n+1 �26�. Insertion of �WF���x�� into Eq. �7� leads to
simplified forms of Eqs. �16� and �15�,

	 =� D�e−
Heff��� �18�

and
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���x���x��� = 	−1� D�e−
Heff�����x���x�� , �19�

respectively, where


Heff��� =
1

2
�

x
�

x�
��x�C��

0 �x − x����x��

+ �
m=2

� A2m

�2m�!�x
�2m�x� . �20�

The coefficient A2m is given in terms of �2k,n such that
k+n�m �26�. For the fluctuation-contribution to the average
density we obtain

���x�� = 	−1� D��WF���x��e−
Heff��� = �
n

an

n!
���x�2n� .

�21�

Note that when the expansion in Eq. �20� is truncated at the
term ��2m, then in a consistent approximation the expansion
in Eq. �21� should be truncated at the term ���2n� with
n�m−1. Otherwise an would contain the coefficients �2k,j
that in 
Heff��� are not included.

In this work we shall limit ourselves to the �6 theory, with
Heff approximated by HWF of the form


HWF��� =
1

2
�

x
�

x�
��x�C��

0 �x − x����x�� +
A4

4!
�

x
�4�x�

+
A6

6!
�

x
�6�x� . �22�

We should mention that on the sc lattice the above HWF���
yields quite good results for the locations of both, the
continuous order-disorder transition and the tcp �26�. For
the CS reference system the explicit forms of A4 ,A6 in the
WF theory are given in Appendix A. The line of instability
of HWF��� �� line� is given in Eq. �11�. For stability reasons
the expansion in Eq. �20� can be truncated at the term ��2n0,
if the corresponding coupling constant is A2n0

�0. In the
case of the CS reference system we have A4�0 for
�0

*��tc
* �0.097 95, and A4�0 for �0

*��tc
* . We find A6�0

outside the density interval �tc
* ��0

*�0.1541. Negative cou-
pling constants were also found for the RPM in Ref. �47�. We
shall not calculate any quantities for �tc

* ��0
*�0.1541, where

the functional �22� is unstable. Near the above range of
densities our results are particularly strongly influenced by
the lack of the terms O��8�, and are less accurate than
elsewhere.

Note that C̃��
0 �k� given in Eq. �9� assumes a minimum for

k=kb�0, and can be written in the form

C̃��
0 �k� = 
*��0 + �Ṽ�k�� , �23�

where


*�0 =
1

�0
* + 
*Ṽ�kb� �24�

and

�Ṽ�k� = Ṽ�k� − Ṽ�kb��k→kb
v2�k − kb�2 + O��k − kb�3� .

�25�

Near the line of instability of HWF, we have 
*�0→0 �see

Eq. �11��. Because C̃��
0 �k� assumes a minimum for k=kb, the

fluctuations �̃�k� with �k � �kb dominate. If the fluctuations
with k significantly different from kb are irrelevant, i.e., for
�0�v2kb

2 �31�, the term O��k−kb�3� in Eq. �25� can be
neglected, and

C̃��
0 �k� � 
*�0 + 
*v2�k − kb�2. �26�

Equations �26� and �22� with A6=0 are of a similar form as
in the Brazovskii theory �31�. In the next section we derive
an approximate form for the grand potential in the �6 theory
�Eq. �22� and �26��, by generalizing the Brazovskii approach.

III. CONSTRUCTION OF THE BRAZOVSKII-TYPE
APPROXIMATION FOR THE RPM

In the charge-ordered phase characterized by a charge-
density profile that is periodic in space, the fluctuating field
can be written in the form

��x� = ��x� + ��x� , �27�

where

��x� = ���x�� �28�

describes the ordered phase with a particular symmetry. In
the ordered phase Eq. �16� can be rewritten in the form

	 = exp�− 
Heff���� � D� exp�− 
Hfluc��,��� , �29�

where

Hfluc��,�� = Heff�� + �� − Heff��� . �30�

For the �6 theory �Eq. �22�� we have


Hfluc��,�� =
1

2
�

x
�

x�
��x�C��

fluc�x − x����x���
x

C1�x���x�

+
1

3!
�

x
C3�x���x�3 +

1

4!
�

x
C4�x���x�4

+
1

5!
�

x
C5�x���x�5 +

A6

6!
�

x
��x�6, �31�

where explicit expressions for C��
fluc and Ci are given in

Appendix B.
By inserting Eq. �29� into Eq. �14� we obtain a functional

of the charge-density distribution ��x�,
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− 
����x�� = − 
Heff���x��

+ ln	� D� exp�− 
Hfluc��,���
 . �32�

The above equation gives the grand potential in a system
with the charge density constrained to have the form ��x�.
For the theory given by the coarse-grained Hamiltonian �20�,
or by its truncated version �22�, this result is exact. For the
charge distribution given by ��x�, the first term in Eq. �32�
can be directly calculated. In order to obtain an approxima-
tion for the fluctuation contribution, we rewrite Hfluc�� ,��
in the form

Hfluc��,�� = HG��,�� + �H��,�� , �33�

where HG�� ,�� is the Gaussian contribution,

HG��,�� =
1

2
�

x
�

x�
��x�C���x − x����x�� . �34�

C���x−x�� is inverse to the exact charge-density correlation

function, i.e., in Fourier representation C̃���k�=1/ G̃���k�,
where

G̃���k� =
�2�
�����

��̃�k���̃�− k�
. �35�

Next we make an assumption that 
�H�� ,�� can be treated
as a small perturbation. When such an assumption is valid,
we can write

ln	� D�e−
�HG+�H�
 �36�

=ln	� D�e−
HG�1 − 
�H + O��
�H�2��

=ln� D�e−
HG + ln�1 − �
�H�G + O��
�H�G

2 �� ,

�37�

where �¯�G denotes averaging with the Boltzmann factor
e−
HG. Assuming again that �
�H�G is small, we obtain


���� = 
Heff��� − ln� D�e−
HG + �
�H�G

+ O��
�H�G
2 � . �38�

In the uniform phase 
� is given by the same expression,
but with �=0=
Heff�0�.

In practice the exact form of C�� cannot be calculated
analytically. In the perturbation theory �48,49� G�� is given
by Feynman diagrams with the 2n-point vertices A2n.
The vertices at x and x� are connected by lines representing
G��

0 �x−x��, and all lines are paired. The corresponding
expressions are integrated over all vertex points, or in

Fourier representation over all G̃��
0 �k� line loops. In this

work we shall follow the self-consistent, one-loop Hartree

approximation for C̃�� �31�. The one-loop contribution to

C̃�� �Fig. 2�a�� is proportional to A4�k G̃��
0 �k�. In the effec-

tively one-loop �6 theory �22�, another contribution to

C̃���k� is given by a diagram �Fig. 2�c�� that is proportional

to A6��kG̃��
0 �k��2 �16,26�. The symmetry factors of the

graphs are calculated according to standard rules �48,49�. In
the self-consistent, effectively one-loop approximation

C̃���k� assumes the approximate form �16,26,31�

C̃��
H �k� = r + 
*�Ṽ�k� , �39�

where r� C̃��
H �kb�, and by using �35�, �31�, and �B1�–�B4�

we obtain

r = 
*�0 +
A4G�r�

2
+

A6G�r�2

8
+

1

2
	A4 +

A6G�r�
2


�
x

�2�x�
V

+
A6

4!
�

x

�4�x�
V

. �40�

In the above V=�x1 is a volume of the system and

G�r� � ���x�2� = �
k

G̃��
H �k� . �41�

The remaining diagrams �including the one shown in Fig.
2�b�� are negligible in the �4 theory for A4

�
*v2kb�r �31�.
When the above condition is not satisfied, the neglected dia-
grams, apart from a modification of the form of r, yield

additional, k-dependent contribution to C̃��
H in Eq. �39�. In-

clusion of such contributions goes beyond the scope of this
work.

In general, the integral in Eq. �41� cannot be calculated
analytically. In fact the integral diverges because of the inte-
grand behavior for k→�. However, the contribution from
k→� is unphysical �overlapping hard cores�. When the fluc-
tuations with k�kb dominate �r�
*v2kb

2�, then the main
physical contribution to G�r� comes from k�kb. In this case
the regularized integral is �31�

G�r� = �
k

1

r + 
*�Ṽ�k�
�r→0�

k

1

r + 
*v2�k − kb�2 =
2a�T*

�r
,

�42�

where

FIG. 2. Feynman diagrams contributing to C�� in the disordered
phase, to two-loop order. Shaded circles and a bullet represent A4

and A6, respectively. Lines represent G��
0 . In the self-consistent

theory the lines represent G��
H .
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a = kb
2/�4�v2� . �43�

Equations �40� and �42� are to be solved self-consistently for
the ordered and the disordered phases. In the disordered
phase, i.e., for �=0, r is denoted by r0.

The second term in Eq. �38�, with C̃���k� approximated

by C̃��
H �k� �see �39��, is

ln� D�e−
HG � − 2a�T*rV , �44�

where the approximation �25� and the same regularization as
in the case of Eq. �42� were used. For the last term in Eq.
�38� we find �see �33�, �31�, �39�, and �40��

�
�H�G/V = −
G�r�2

8
A4 −

G�r�3

24
A6 −

G�r�2

16
A6�

x

�2�x�
V

.

�45�

The above results and Eq. �42� give the explicit form of the
grand potential �38�,


���0
*,T*;�;r�/V = 
HWF��0

*,T*;��/V + 2a�rT* −
A4a2

2

T*

r

−
A6a3

3
	T*

r

3/2

−
A6a2

4

T*

r
�

x

�2�x�
V

,

�46�

where r=r��0
* ,T* ;�� is a function of �0

* ,T* and a functional
of ��x� that is to be determined from Eqs. �40� and �42�. For
given values of �0

* and T*, the value of the �dimensionless�
grand potential for a considered phase corresponds to the
minimum of 
���0

* ,T* ;� ;r� with respect to ��x�, with �0
*

and T* fixed.
T* represents temperature, but �0

* differs from the average
number density when the fluctuations are included �see �21��.
The lowest-order fluctuation-induced density shift, given by
the first term in Eq. �21�, yields the leading contribution to
the average local density �*�x� of the form

�1
*�x� = �0

* −
�2,1

2�0,2
�G�r� + ��x�2� . �47�

The above gives the density shift in the �4 theory. Higher
order terms in Eq. �21� can be included simultaneously
with higher-order terms in Eq. �22�. In the �6 theory the
next-to-leading order term in Eq. �21� leads to the following
approximation for the average density:

�2
*�x� = �1

*�x� +
a2

2
���x�4 + 6��x�2G�r� + 3G�r�2� , �48�

where a2 is expressed in terms of �2m,n in Appendix A. The
thermodynamic density is given by the space-averaged
density profile according to

�* = �
x

�*�x�
V

= �
Vu

�*�x�
Vu

, �49�

where the integration �Vu
is over the unit cell of the ordered

structure, and Vu is the unit-cell volume. Explicit expression
for the average density in the liquid is given in Appendix A.

In practice a determination of the equilibrium charge-
density profile ��x� and the phase transition between the
charge-ordered and charge-disordered phases from Eqs. �46�,
�40�, and �42� is difficult. The problem simplifies greatly
when a form of ��x� is limited to a particular function that
depends on several parameters. In this case the functionals
are reduced to functions of several variables, and the prob-
lem of obtaining a minimum of 
� for a given class of
functions becomes tractable.

For an ordered phase of a particular symmetry, ��x� can
be written as a linear combination of functions gi�x� forming
a corresponding orthonormal basis �44�,

��x� = �
i

�igi�x� , �50�

where �i are the corresponding amplitudes. In Fourier
representation the basis functions can be written in the form

g̃i�k� =
�2�d

�2ni
�
j=1

ni

���k − kib
j � + ��k + kib

j �� , �51�

where for the considered symmetry 2ni and kib
j are the num-

ber of vectors and the jth vector in the ith shell, respectively.
In order to specify the structure we need to know the vectors
kib

j that determine the size of the unit cell of the structure,
and the amplitudes �i. We assume that the vectors forming
the first shell correspond to the wave vectors of the most
probable excitations in the uniform phase. In the theory out-
lined above such wave vectors are determined by a minimum

of C̃���k�, since it yields a maximum of the probability

�exp�−
HG�. In the one-loop approximation C̃���k� as-
sumes a minimum for �k � =kb, we thus assume �k1b

j � =kb.
When the form of ��x� is restricted to Eq. �50� and

�k1b
j � =kb, then for given �0

* and T*, r=r��0
* ,T* ;�� and


���0
* ,T* ;� ;r� become functions of the amplitudes �i.

Typically, only the first one �31,43� or two shells �44� in Eq.
�50� are taken into account in studies of the fluctuation-
induced first-order phase transitions �31,43�. Our explicit
results are obtained in the one-shell approximation,

��x� = �1g1�x� . �52�

For a few points we also considered the two-shell approxi-
mation, but the long formulas will not be given here. In the
one-shell approximation we can write

�
x

��x�2

V
= �1

2, �
x

��x�4

V
= �1

4so, �
x

��x�6

V
= �1

6�o,

�53�

where
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so = �
x

g1�x�4

V
= �

Vu

g1�x�4

Vu
�54�

and

�o = �
x

g1�x�6

V
= �

Vu

g1�x�6

Vu

are the geometric factors associated with a particular sym-
metry of the ordered phase. In the one-shell approximation
the above relations should be inserted into Eqs. �40� and
�46�, and the extremum condition for 
� can be written in
the explicit form

r + 	A4 + aA6�T*

r

	 so

3!
−

1

2

�1

2 +
A6

5!
��o − 5so��1

4 = 0.

�55�

The resulting set of equations can be solved for each point
��0

* ,T*� with respect to r and �1. When the results are in-
serted in Eq. �46�, the minimum of the grand potential is
obtained for a given pair of so and �o, i.e., for a chosen
structure of the ordered phase. The above method of obtain-
ing the grand potential is equivalent to the method used in
Refs. �31,43� and outlined in Appendix D. We verified our
calculations by comparing the results obtained by both
methods.

IV. TRANSITION BETWEEN THE CHARGE-ORDERED
AND CHARGE-DISORDERED PHASES

Let us first focus on the � line along which the decay
length of the charge-density correlation function diverges
and the uniform phase becomes unstable. At the boundary of
stability of the uniform phase the second functional deriva-

tive of the grand-potential functional �38� is C̃���kb�=0,
where kb is the wave number of the critical charge-density

fluctuations. On the MF level, C̃���kb� is approximated by

C̃��
0 �kb�, and the system becomes unstable at the line �11�.

In the effectively one-loop self-consistent Hartree ap-

proximation C̃���kb� is approximated by C̃��
H �kb�. We have

found that C̃��
H �kb�=r0, where r0 is a self-consistent solution

of Eqs. �40� and �41� with �=0. For r0�1 the approxima-
tion �42� is valid, and we easily find that r0=0 is a solution
of Eqs. �40� and �42� with �=0 only for T*=0. Thus, in a
presence of fluctuations the � line of continuous transitions
disappears.

For a given thermodynamic state there may exist one or
several minima of 
� �Eq. �46��, associated with a disor-
dered phase and/or ordered phases with different symmetries.
The lowest value of the grand potential for given �0

* ,T* cor-
responds to the stable phase. Other phases are metastable
�unstable� if a minimum of the grand potential exists �does
not exist�. At the phase coexistence two minima of the ther-
modynamic potential, corresponding to the two coexisting
phases, are equal; other minima, if present, are associated
with larger values of the grand potential.

When the expansion for ��x� in Eq. �50� is truncated at
the first shell, analytical results for the phase coexistence are

possible. However, only a very crude approximation for the
ordered structure can be obtained. In this study we shall limit
ourselves to analytical calculations in the one-shell approxi-
mation. More accurate results for the structure of the ordered
phase can be obtained numerically in a future work.

We are interested in a stability of the ionic crystal. In the
case of the CsCl symmetry �Pn3m�, the first shell is formed
by the three vectors kb

1 /kb= �1,0 ,0� ,kb
2 /kb= �0,1 ,0�, and

kb
3 /kb= �0,0 ,1�, i.e., n1=3, and in real space

g1
P�x,y,z� =

2
�6

�cos�kbx� + cos�kby� + cos�kbz�� . �56�

The above first shell determines the so-called P structure.
Unfortunately, topological properties of P differ from that
of the CsCl crystal. Namely, the P structure is bicontinuous,
i.e., the surface g1�x�=0 separates space into the positively
and negatively charged regions, and both regions are
continuous, as shown in Fig. 3. In the ionic crystal, however,
the positively and negatively charged regions are topologi-
cally equivalent to spheres separated by the uncharged
solvent of nonvanishing volume. In addition, the nearest
neighbor distance in the P structure is �3 /kb�2.2. This
distance is much larger than in the actual CsCl crystal. The
nearest neighbor distance in the ionic crystal is closer to
the nearest neighbor distance,  /kb�1.27, in the case of the
one-dimensional ordering �lamellar phase�, where n1=1 and

g1
lam�x� = �2 cos�kbx� . �57�

Since the precise structure of the crystalline phase cannot be
determined within the one- or two-shell approximation, we
consider both phases to find and compare the transition lines
between them and the disordered phase. In this way we gain
some insight in the approximate location of the actual phase
transition.

FIG. 3. �Color online� The surface g1
P�x�=0 in the unit cell of

the periodic structure P. This surface separates the positively and
negatively charged regions. The lattice constant is 2 /kb�2.55 in
ion-diameter units.
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A. MF approximation

In the MF the fluctuation contribution to 
� in Eq. �38� is
neglected. In the one-shell approximation the grand potential
is a function of the amplitude �1,


HWF��0,T*,�1�/V =
1

2

*�0�1

2 +
A4

4!
so�1

4 +
A6

6!
�o�1

6,

�58�

where the geometric factors so and �o are found to be

so = �3/2, lamellar structure,

5/2, P structure,
�59�

and

�o = �5/2, lamellar structure,

155/18, P structure.
�60�

For �0
*��tc

* the order-disorder transition is continuous and
coincides with the line of instability �11�, whereas for
�0

*��tc
* the order-disorder transition is first order, and occurs

when the condition

�
HWF��0,T*,�1�
��1

= 0 = 
HWF��0,T*,�1� �61�

is satisfied. The expressions for the transition lines Tlam
* and

TP
* , and the amplitude �1 are given in Appendix C �Eqs. �C1�

and �C2��. It turns out that the P phase is only metastable.
However, the relative difference �Tlam

* −TP
* � /Tlam

* is very
small.

The density in the ordered phase can be obtained from Eq.
�47� by neglecting the fluctuation contribution. In the lowest
nontrivial order we have

�*�x� = �0
* −

�2,1

2�0,2
��x�2. �62�

We verified that Eq. �62� yields �±
*�x�= ��*�x�±��x�� /2�0

for all space positions. The space-averaged density in the
ordered phases is given in Eq. �49�. The explicit expression
for ��*=�*−�0

* is given in Appendix C. The resulting
density-temperature phase diagram is shown in Fig. 4.

The diagram shown in Fig. 4 is obtained with the func-
tional 
��MF�� ,��, Eq. �7�, approximated by the functional
HWF, Eq. �22�. In order to verify the accuracy of the approxi-
mation �22�, we calculated the functional

��MF���x� ,�*�x�−�0

*� along the line Tlam
* ��0

*�, for the
fields ��x� and �*�x�−�0

* that yield HWF=0. The result
shown in Fig. 5 indicates that our approximate functional
�22� yields the poorest accuracy in this part of the phase
diagram where A6 is very small �see the discussion below
Eqs. �13� and �22��, and the term ��8 should be included.
We also considered the two-shell approximation for ��x�.
We found very similar results, with somewhat lower transi-
tion temperatures, and with a smaller difference between
them. We conclude that the transition temperature obtained
in the approximate theory �Eq. �22�� is overestimated.

Our main concern in this work is to determine the
fluctuation contribution to the grand potential in Eq. �38�. We

shall not attempt to find better MF results by numerical
minimization of the functional �7�.

B. Effects of fluctuations on phase transitions

In this section we include the fluctuation contribution
to � in Eq. �38�. We consider two cases, the �4 theory
�A6�0 in the above equations�, as in the Brazovskii work
�31�, and the �6 theory.

1. Results of the �4 theory

The �4 theory is stable for �0
*��tc

* , and for such densities
the term O��6� can be neglected. In this case analytical so-
lutions for r0 and r of Eqs. �40� and �55� can be obtained.
Physical solution for r corresponds to the lowest value of �1.
The transition lines between the uniform and the two ordered
phases are shown in Fig. 6. In the one-shell approximation

FIG. 4. Density-temperature MF phase diagram obtained from
the approximate functional �58�. Temperature T* and density �* are
in standard reduced units defined in Sec. II.

FIG. 5. The MF grand potential 
��MF���x� ,�*�x�−�0
*� �see

Eq. �7�� along the approximate transition line �C1�, where HWF=0.
��x� and �*�x� are given in Eq. �52� with �C2�, and in Eq. �62�,
respectively.
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the lamellar order turns out to be more stable than the P
phase. We also considered the much more tedious two-shell
approximation for a few points. We found �2 significantly
smaller than �1, and the phase-transition lines shifted to
somewhat lower temperatures compared to the one-shell
approximation. The rest of our results is obtained in the
much simpler one-shell approximation.

Recall that our results rely on the approximate Eq. �42�,
which is valid provided that the condition r�v2kb

2 /T*��0
*� is

satisfied. We verified that along the coexistence lines T*��0
*�

�Fig. 6�, the r and r0 are one and two orders of magnitude
smaller than v2kb

2 /T*��0
*��6/T*��0

*�, respectively. Thus,
close to the phase coexistence the approximation �42� used in
our calculations is valid. However, the condition
A4

�
*v2kb�r, under which the disregarded diagrams �in-
cluding Fig. 2�b�� can be neglected �31�, is not satisfied for
low densities. Since A4 decreases with increasing density,
for higher densities the accuracy of our results improves.

In Fig. 7 the temperature at the transition to the lamellar
phase is shown as a function of the most probable density
�MF result� and as a function of the average density, given by
the approximate expressions �47� and �A7�. The average den-
sity is a nonmonotonic function of T* along the phase coex-
istence �Fig. 7� for T*�0.15. As already discussed in Sec.
III, for the corresponding range of �0

* the approximate func-
tional �22� is oversimplified. Moreover, the neglected dia-
grams �Fig. 2�b�� may yield a relevant contribution to the
grand potential for low densities.

Let us compare the temperatures at the continuous transi-
tion in MF and at the first-order transition in our theory
�Figs. 4 and 7�. In particular, for �*=0.8 we find T*�1.29
and T*�0.43 in the first and in the second case, respectively.
For T*�0.43, on the other hand, we find in MF the transition
density �0

*�0.28, a much lower value than in our theory. As
we see, in this approximation the fluctuation-induced shift of
the liquid-phase boundary is substantial. However, for
�*=0.8 the temperature at the transition between liquid and
the CsCl crystal obtained in simulations �4� is T*�0.1. Be-
fore we identify the charge-ordered phase, we need to find
out how the transition temperature and density change when

better approximations for HWF, for the function ��x� and for
the average density are made within our theory. In the next
section we study the role of the �6 term in Eq. �22�.

2. Results of the �6 theory

In this section we determine the effect of the �6 term on
the phase behavior. Analytical solutions for the phase transi-
tions can be obtained by using the original Brazovskii
method �31,43�, if in equations determining the phase tran-
sition the terms of the highest order in �1 are neglected. This
is justified when �1�1. In Appendix D we explain the key
steps of the calculations. The full equations in the �6 theory
can only be solved numerically. Results for the transition
lines between the uniform and the two ordered phases are
shown in Fig. 8, where analytical results of the approximate
theory and numerical results of the full �6 theory are shown
as lines and as symbols, respectively. The liquid-phase
boundary, T*��0

*�, is shown in Fig. 9 as a function of the
average density at different levels of approximation in Eq.
�21�. The thick solid line is obtained from Eq. �21� with the
two leading-order terms included, i.e., in an approximation
consistent with Eq. �22�. We verified that Eq. �42� used in
our calculations is also valid in the �6 theory.

By comparing Figs. 6 and 8 we see that in the �6 theory
both transition lines are significantly shifted to lower tem-
peratures compared to the �4 theory. Figure 9 shows that in
the consistent approximation for the average density, higher
density at the phase coexistence is obtained. The results of
the �6 theory are thus closer to the simulation results for the
liquid-CsCl transition, but the transition temperatures are
still too high. For example, for �*=0.8 we have T*�0.43
and T*�0.28 in the �4 and in the �6 theory, respectively,
whereas for the liquid-CsCl transition T*�0.1 for the same
density �4�. Note that the MF results �see the discussion at
the end of Sec. IV A� suggest that the truncated functional

FIG. 6. The fluctuation-induced first-order transition lines be-
tween the disordered and the ordered phases in the �4 theory in the
��0

* ,T*� phase diagram. The transition to the P phase is metastable.

FIG. 7. Temperature at the liquid-lamellar phase transition in the
�4 theory as a function of the average density in the liquid phase at
different levels of approximation in Eq. �21�. Thin solid line corre-
sponds to the zeroth-order term in Eq. �21�, i.e., �* is approximated
by �0

*. Thick solid line is obtained by including the leading-order
contribution to the fluctuation-induced density shift, i.e., �* is ap-
proximated by �1

* �Eq. �47��. Explicit expression for the average
density in the liquid is given in Eq. �A7�.
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�22� leads to overestimated transition temperatures compared
to the original functional �7�. We can expect that by addition
of the term ��8 in Eq. �22� and the third-order term in Eq.
�21�, lower temperatures and higher densities at the transition
should be obtained. Better forms of the charge-density pro-
file ��x� should lead to lower transition temperatures as
well, as indicated by the �partial� results that we obtained in
the two-shell approximation. Thus, systematic improvement
of the approximations that we make in explicit calculations,
should lead to systematically decreasing transition tempera-
ture and increasing density, and our results should systemati-
cally approach the simulation results for the liquid–ionic-
crystal transition �4�.

For the two quite different charge-ordered phases the tran-
sitions to the disordered phase are not far from each other

�Fig. 8�. It is thus plausible that the transitions to the other
ordered structures, including the stable one, are located in the
same part of the phase diagram.

Let us focus on the density difference between the coex-
isting phases. In the high-temperature part of the phase co-
existence the density difference ��* between the coexisting
phases is rather small �see Ref. �4� and Fig. 1�. By using
Eqs. �49� and �48� we find a vanishingly small density dif-
ference between the coexisting liquid and lamellar phases.
This result probably follows from the poor, one-shell ansatz
for the charge-density profile. The density profile of cations,
�+

*�x�= ��2
*�x�+��x�� /2, where �2

*�x� is given in Eq. �48�, is
shown in Fig. 10 for two densities at the coexistence with the
liquid phase. Beyond the effective one-loop approximation
we expect some dependence of the unit cell of the crystal on
density, but its determination requires further studies. The
shape of the density profile in the charge-ordered phase re-
sembles an average density profile in a crystal �but only in
one direction�. Of course in the one-shell approximation the
crystalline structure cannot be reproduced accurately. Our
results for the liquid phase are more accurate, because they
do not depend on the form of ��x�, which is the weakest
point of our explicit results.

V. SUMMARY

In this work we considered the fluctuation contribution to
the grand-thermodynamic potential in Eq. �32� within the
field-theoretic description of the RPM. Our main purpose
was a determination of an order, location and nature of the
transition between the charge-disordered and charge-ordered
phases. We obtained an approximate expression �Eqs. �46�,
�40�, and �42�� for the grand-potential functional of the
charge-density profile ��x� in the ordered phase. Our ap-
proximation is based on the self-consistent, effective one-
loop Hartree approximation, applied to the �6 theory that
was derived for the RPM in Ref. �26�.

We found that in the continuum-space RPM the � line of
continuous transitions disappears when the charge-density

FIG. 8. The fluctuation-induced first-order transition lines
between the liquid and the ordered phases in the �6 theory in the
��0

* ,T*� phase diagram. Lines are the analytical solutions of
the approximate equations �Appendix D� and symbols are the nu-
merical solutions of the full equations described in the text. The
transition to the P phase is metastable.

FIG. 9. Temperature at the first-order phase transition between
liquid and the charge-ordered phase in the �6 theory, as a function
of the average density �21� at different levels of approximation.
Thin solid line corresponds to �* approximated by the MF result,
�0

*. Along the dashed line �* is given by the space-averaged leading-
order fluctuation contribution to the average density �1

* �Eq. �47��.
Thick solid line corresponds to �2

* �Eq. �48��, where the next-to-
leading ordered term in �21� is taken into account.

FIG. 10. The density profiles of cations, �+
*�x�, in the charge-

ordered phase at the coexistence with the liquid phase for two dif-
ferent densities in the �6 theory. Dashed line corresponds to
�0

*=0.5 ��*�0.6� and the solid line corresponds to �0
*=0.7

��*�0.75�. x is in � units and �+
* is dimensionless.
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fluctuations are included. Instead, a first-order transition to a
charge-ordered phase appears. The range of temperatures and
densities at the first-order transition to the charge-ordered
phase is similar to the range of temperatures and densities at
the liquid–ionic-crystal transition found in simulations �4�. In
the charge-ordered phase the average charge-density exhibits
oscillations with a period �2.5� �beyond the one-loop ap-
proximation the period may be slightly different�, and with
an amplitude �0.5. Thus, our results strongly indicate that
the fluctuation-induced first-order order-disorder transition
should be identified with ionic crystallization. We can con-
clude that the � line found in different theories of the MF
type is in fact a MF indication of ionic crystallization. We
should note, however that the line �11� plays a role of a
structural line. At the low-temperature side of this line in-
stantaneous density profiles of a form of charge-density
waves with a period �2.5� dominate. In real space charge-
ordered clusters are formed, and individual ions are rare in
typical microscopic states �simulation snapshots�. The struc-
ture of typical microscopic states changes continuously when
the high temperature side of the line �11� is approached,
and random distribution of charges begin to dominate at the
high T* side of the line �11�. The densities of ions averaged
over all microscopic states are uniform on both sides of the
structural line �11� when fluctuations are included.

The explicit results for the first-order phase transition
were obtained analytically within the simplest, one-shell ap-
proximation for ��x� �see �52��, for two ordered structures:
one-dimensional, lamellar phase, and three-dimensional, P
phase shown in Fig. 3. We do not expect that the structure of
the charge-ordered phase can be correctly reproduced on this
simple level of approximation. Our approximate result for
the crystalline structure is only a very crude approximation.
The transition lines for the two different structures, however,
are located close to each other on the ��* ,T*� phase diagram.
It is thus very plausible that the transition line to the stable
phase should be located near the two transition lines, and
conclusions concerning the approximate location of the
order-disorder transition are justified.

In the effectively one-loop approximation we find the
same lattice constant of the CsCl crystal, 2 /kb, for a range
of densities. Beyond the one-loop approximation we expect a
weak dependence of the lattice constant on density. This re-
sult and Fig. 10 suggest that the number of defects �vacan-
cies� in the crystal coexisting with the liquid �fused salt�
increases with decreasing T*. The crystal melts either when
at relatively low T* many defects are present �low �*�, or
when there are only few defects �high �*�, but T* is high.

Our results show a reasonable agreement with simulations
even for the very crude approximation for ��x�, and we
verified that by addition of further terms to Eqs. �22�, �47�,
and �52� a better agreement should be obtained. The accu-
racy of the results can be significantly improved within the
approach developed in this work by choosing a better ansatz
for the form of ��x�. Note that the fluctuation contribution to

� depends only on global characteristics of ��x�, i.e.,
on integrals of ��x�2n, where n�3 in the case of the �6

theory. Only the MF contribution depends on adetailed shape
of ��x� through the term �x�x� ��x�C��

0 �x−x����x��

=�k�̃�k�C̃��
0 �k��̃�k��. Numerical determination of the

structure of the charge-ordered phase is thus possible
within our approach, but it goes beyond the scope of the
present work. We conclude that the field-theoretic approach
developed in this work is suitable for a description of ionic
crystallization on a semiquantitative level.
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APPENDIX A: COEFFICIENTS A4 , A6, AND a2

IN THE WF APPROXIMATION

The coupling constants in the WF approximation are
given in terms of the coefficients �2m,n �26�,

A4 = �4,0 − 3
�− �2,1�2

�0,2
, �A1�

A6 = �6,0 − 15
�− �2,1��− �4,1�

�0,2
− 15

�− �2,1�3�− �0,3�
�0,2

3

− 45
�− �2,2��− �2,1�2

�0,2
2 , �A2�

and in the CS approximation they assume the explicit forms

A4 = −
1 − 20s + 10s2 − 4s3 + s4

�0
*3�1 + 4s + 4s2 − 4s3 + s4�

�A3�

and

A6 =
3W�s�

�0
*5�1 + 4s + 4s2 − 4s3 + s4�5 , �A4�

where

W�s� = 3 − 84s + 360s2 + 2644s3 + 1701s4 − 8736s5

+ 11 240s6 − 8304s7 + 3861s8 − 1164s9 + 240s10

− 36s11 + 3s12.

The coefficient a2 in Eqs. �21� and �48� is

a2

2
= −

�4,1
0

4 ! �0,2
, �A5�

where

�4,1
0 = �4,1 −

6�− �2,2��− �2,1�
�0,2

−
3�− �3,0��− �2,1�2

�0,2
2 .

�A6�

In the liquid phase the explicit form of the average density
�47� is

�1
* = �0

* +
a�1 − s�4

�0
*�1 + 4s + 4s2 − 4s3 + s4�

�T*

r0
, �A7�

where Eq. �42�, Eq. �40� with �=0, and the CS reference
system have been used. The explicit form of �2

* can be
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obtained in the same way with the help of Eqs. �A5� and
�A6�.

APPENDIX B: EXPLICIT FORMS OF THE FUNCTIONS
C��

fluc AND Ci IN THE FUNCTIONAL (31)

C��
fluc�x − x�� = C��

0 �x − x�� + 	A4

2!
�2�x� +

A6

4!
�4�x�


���x − x�� , �B1�

C1�x� = �
y

��y�C��
0 �y − x� +

A4

3!
�3�x� +

A6

5!
�5�x� ,

�B2�

C3�x� = A4��x� +
A6

6
��x�3, �B3�

C4�x� = A4 +
A6

2
��x�2, �B4�

and

C5�x� = ��x� . �B5�

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE
PHASE TRANSITIONS IN THE MF APPROXIMATION

The line of the first-order transition and the amplitude of
the charge-density wave are given by

T* =
8A6�oṼ�kb��0

*

5�A4so�2�0
* − 8A6�o

�C1�

and

�1
2 = −

A4so

A6�o
, �C2�

respectively. The space-averaged density shift has the form

��* =
15�2,1A4so

lam

2�0,2A6�o
lam . �C3�

APPENDIX D: EXPLICIT EXPRESSION FOR THE
GRAND-POTENTIAL DIFFERENCE

After a substitution of Eqs. �27� and �28� into Eq. �22�, the
Brazovskii’s equation of state �22�,

h =
��

��̃�kb�
,

can be written as

h = 	C̃��
0 �kb� +

A4G
2

+
A6G2

8

�̃�− kb�

+ 	A4

3!
+

A6

12
G
�

k�
�

k�
�

k�
��kb + k� + k� + k��

��̃�k���̃�k���̃�k�� +
A6

5!
�

k�
�

k�
�

k�
�

k��
�

k���
��kb

+ k�

+ k� + k� + k�� + k����
i

�̃�ki� , �D1�

where C̃��
0 �k� and G are given in Eqs. �26� and �43�,

respectively. For C̃���k� �see Eq. �27�� we obtain Eq. �39�
with �40�.

For �� � �1 we truncate the expansions in � in Eqs. �D1�
and �40� at the O��3� and O��2� terms, respectively. As a
result, the correlation function is given in Eq. �40� with the
term O��4� neglected. The truncated Eq. �D1�, and Eq. �40�
give for h the result

h = r�̃�− kb� + 	A4 +
A6G

2

�

k1

�
k2

�̃�k1��̃�k2�

�	 1

3!
�̃�kb − k1 − k2� −

1

2
�̃�kb�
 . �D2�

In the one-shell approximation the explicit form of the
equilibrium condition h=0 is

r + 	A4 +
A6�

�r

bn�1

2 = 0, �D3�

where �=a�T*, with a given in Eq. �43�, and

bn =
�2n1

3!
�

k1

�
k2

g̃1�k1�g̃1�k2�g̃1�kb − k1 − k2� −
1

2
.

�D4�

For both the lamelar and P structures bn=−1/ �4n1�.
The difference between the thermodynamic potential in

the ordered and the disordered phases can be obtained in the
same way as in Ref. �43�, and we find

�� =
A4bn

4
�1

4 + �r, �D5�

where

�r = �
0

�1

d� �	r +
A6bn�

�r
�2
 , �D6�

�2 =
2r3/2 − 2�r
*�0 − A4�

P
−

�

�r
, �D7�

and
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� d� = 	�r

P
+

�

2r3/2 +
A6��2

2rP 
dr, P = A4
�r + A6� .

�D8�

After inserting �D7� and �D8� into �D6� we obtain an
integral which can be calculated analytically �with the

help of Mathematica�. In order to obtain r and �1 at the
coexistence, we solve Eq. �40� supplemented with the con-
dition �D3�. As a result, we arrive at the explicit expressions
for �� and r, which were used in a determination of the
phase diagram shown in Fig. 9, but are too cumbersome to
be presented here.
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